Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.278
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542059

RESUMO

The retina is a central nervous tissue essential to visual perception and highly susceptible to environmental damage. Lower vertebrate retinas activate intrinsic regeneration mechanisms in response to retinal injury regulated by a specialized population of progenitor cells. The mammalian retina does not have populations of progenitor/stem cells available to activate regeneration, but contains a subpopulation of differentiated cells that can be reprogrammed into retinal stem cells, the ciliary epithelium (CE) cells. Despite the regenerative potential, stem cells derived from CE exhibit limited reprogramming capacity probably associated with the expression of intrinsic regulatory mechanisms. Platelet-activating factor (PAF) is a lipid mediator widely expressed in many cells and plays an important role in stem cell proliferation and differentiation. During mammalian development, PAF receptor signaling showed important effects on retinal progenitors' cell cycle regulation and neuronal differentiation that need to be further investigated. In this study, our findings suggested a dynamic role for PAF receptor signaling in CE cells, impacting stem cell characteristics and neurosphere formation. We showed that PAF receptors and PAF-related enzymes are downregulated in retinal progenitor/stem cells derived from PE cells. Blocking PAFR activity using antagonists increased the expression of specific progenitor markers, revealing potential implications for retinal tissue development and maintenance.


Assuntos
Glicoproteínas da Membrana de Plaquetas , Receptores Acoplados a Proteínas G , Retina , Células-Tronco , Animais , Proliferação de Células , Células-Tronco/metabolismo , Epitélio , Mamíferos
2.
Sci Rep ; 14(1): 6229, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486006

RESUMO

Distinct platelet activation patterns are elicited by the tyrosine kinase-linked collagen receptor glycoprotein VI (GPVI) and the G-protein coupled protease-activated receptors (PAR1/4) for thrombin. This is reflected in the different platelet Ca2+ responses induced by the GPVI agonist collagen-related peptide (CRP) and the PAR1/4 agonist thrombin. Using a 96 well-plate assay with human Calcium-6-loaded platelets and a panel of 22 pharmacological inhibitors, we assessed the cytosolic Ca2+ signaling domains of these receptors and developed an automated Ca2+ curve algorithm. The algorithm was used to evaluate an ultra-high throughput (UHT) based screening of 16,635 chemically diverse small molecules with orally active physicochemical properties for effects on platelets stimulated with CRP or thrombin. Stringent agonist-specific selection criteria resulted in the identification of 151 drug-like molecules, of which three hit compounds were further characterized. The dibenzyl formamide derivative ANO61 selectively modulated thrombin-induced Ca2+ responses, whereas the aromatic sulfonyl imidazole AF299 and the phenothiazine ethopropazine affected CRP-induced responses. Platelet functional assays confirmed selectivity of these hits. Ethopropazine retained its inhibitory potential in the presence of plasma, and suppressed collagen-dependent thrombus buildup at arterial shear rate. In conclusion, targeting of platelet Ca2+ signaling dynamics in a screening campaign has the potential of identifying novel platelet-inhibiting molecules.


Assuntos
Cálcio , Fenotiazinas , Inibidores da Agregação Plaquetária , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Cálcio/metabolismo , Trombina/metabolismo , Sinalização do Cálcio , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptor PAR-1/metabolismo , Plaquetas/metabolismo , Ativação Plaquetária , Cálcio da Dieta/farmacologia , Agregação Plaquetária
3.
FASEB J ; 38(4): e23468, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334433

RESUMO

The endothelial regulation of platelet activity is incompletely understood. Here we describe novel approaches to find molecular pathways implicated on the platelet-endothelium interaction. Using high-shear whole-blood microfluidics, employing coagulant or non-coagulant conditions at physiological temperature, we observed that the presence of human umbilical vein endothelial cells (HUVEC) strongly suppressed platelet adhesion and activation, via the collagen receptor glycoprotein VI (GPVI) and the PAR receptors for thrombin. Real-time monitoring of the cytosolic Ca2+ rises in the platelets indicated no major improvement of inhibition by prostacyclin or nitric oxide. Similarly under stasis, exposure of isolated platelets to HUVEC reduced the Ca2+ responses by collagen-related peptide (CRP-XL, GPVI agonist) and thrombin (PAR agonist). We then analyzed the label-free phosphoproteome of platelets (three donors), exposed to HUVEC, CRP-XL, and/or thrombin. High-resolution mass spectrometry gave 5463 phosphopeptides, corresponding to 1472 proteins, with good correlation between biological and technical replicates (R > .86). Stringent filtering steps revealed 26 regulatory pathways (Reactome) and 143 regulated kinase substrates (PhosphoSitePlus), giving a set of protein phosphorylation sites that was differentially (44) or similarly (110) regulated by HUVEC or agonist exposure. The differential regulation was confirmed by stable-isotope analysis of platelets from two additional donors. Substrate analysis indicated major roles of poorly studied protein kinase classes (MAPK, CDK, DYRK, STK, PKC members). Collectively, these results reveal a resetting of the protein phosphorylation profile in platelets exposed to endothelium or to conventional agonists and to endothelium-promoted activity of a multi-kinase network, beyond classical prostacyclin and nitric oxide actors, that may contribute to platelet inhibition.


Assuntos
Glicoproteínas da Membrana de Plaquetas , Trombina , Humanos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombina/metabolismo , Proteínas Quinases/metabolismo , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , Ativação Plaquetária/fisiologia , Plaquetas/metabolismo , Endotélio/metabolismo , Prostaglandinas I
4.
Biochem Biophys Res Commun ; 701: 149629, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330730

RESUMO

Accumulation of free heme B in the plasma can be the result of severe hemolytic events, when the scavenger system for free hemoglobin and heme B is overwhelmed. Free heme B can be oxidized into toxic hemin, which has been proven to activate platelet degranulation and aggregation and promote thrombosis. In the present study we analyzed the effect of hemin on the activation-mediated lysosomal degranulation and CD63 surface expression on platelets using classic flow cytometry and fluorescence microscopy techniques. Classical platelet activators were used as control to distinguish the novel effects of hemin from known activation pathways. CD63 is a tetraspanin protein, also known as lysosomal-associated membrane protein 3 or LAMP-3. In resting platelets CD63 is located within the membrane of delta granules and lysosomes of platelet, from where it is integrated into the platelet outer membrane upon stimulation. We were able to show that hemin like the endogenous platelet activators ADP, collagen or thrombin does provoke CD63 re-localization. Interestingly, only hemin-induced CD63 externalization is dependent on the subtilisin-like pro-protein convertase furin as shown by inhibitor experiments. Furthermore, we were able to demonstrate that hemin induces lysosome secretion, a source of the hemin-mediated CD63 presentation. Again, only the hemin-induced lysosome degranulation is furin dependent. In summary we have shown that the pro-protein convertase furin plays an important role in hemin-mediated lysosomal degranulation and CD63 externalization.


Assuntos
Furina , Hemina , Glicoproteínas da Membrana de Plaquetas , Tetraspanina 30 , Antígenos CD/metabolismo , Plaquetas/metabolismo , Furina/metabolismo , Hemina/metabolismo , Glicoproteínas de Membrana Associadas ao Lisossomo , Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Tetraspanina 30/metabolismo , Humanos
5.
Platelets ; 35(1): 2308635, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38345065

RESUMO

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) restricts platelet activation via platelet collagen receptor GPVI/FcRγ-chain. In this study, screening against collagen-induced platelet aggregation was performed to identify functional CEACAM1 extracellular domain fragments. CEACAM1 fragments, including Ala-substituted peptides, were synthesized. Platelet assays were conducted on healthy donor samples for aggregation, cytotoxicity, adhesion, spreading, and secretion. Mice were used for tail bleeding and FeCl3-induced thrombosis experiments. Clot retraction was assessed using platelet-rich plasma. Extracellular segments of CEACAM1 and A1 domain-derived peptide QDTT were identified, while N, A2, and B domains showed no involvement. QDTT inhibited platelet aggregation. Ala substitution for essential amino acids (Asp139, Thr141, Tyr142, Trp144, and Trp145) in the QDTT sequence abrogated collagen-induced aggregation inhibition. QDTT also suppressed platelet secretion and "inside-out" GP IIb/IIIa activation by convulxin, along with inhibiting PI3K/Akt pathways. QDTT curtailed FeCl3-induced mesenteric thrombosis without significantly prolonging bleeding time, implying the potential of CEACAM1 A1 domain against platelet activation without raising bleeding risk, thus paving the way for novel antiplatelet drugs.


What is the context? The study focuses on Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) and its role in platelet activation, particularly through the GPVI/FcRγ-chain pathway.The research aims to identify specific fragments of CEACAM1's extracellular domain that could restrict platelet activation, without increasing bleeding risk.What is new? The researchers identified a peptide called QDTT derived from the A1 domain of CEACAM1's extracellular segment. This peptide demonstrated the ability to inhibit platelet aggregation, secretion, and GP IIb/IIIa activation.The study also revealed that specific amino acids within the QDTT sequence were essential for its inhibitory effects on collagen-induced aggregation.What is the impact? The findings suggest that the A1 domain-derived peptide QDTT from CEACAM1 could serve as a potential basis for developing novel antiplatelet drugs. This peptide effectively limits platelet activation and aggregation without significantly prolonging bleeding time, indicating a promising approach to managing thrombosis and related disorders while minimizing bleeding risks.


Assuntos
60508 , Cloretos , Compostos Férricos , Trombose , Camundongos , Animais , Glicoproteínas da Membrana de Plaquetas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Agregação Plaquetária , Plaquetas/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/metabolismo , Peptídeos/farmacologia , Colágeno/farmacologia , Trombose/metabolismo
7.
Lancet Neurol ; 23(2): 157-167, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267188

RESUMO

BACKGROUND: Antagonists of glycoprotein VI-triggered platelet activation used in combination with recanalisation therapies are a promising therapeutic approach in acute ischaemic stroke. Glenzocimab is an antibody fragment that inhibits the action of platelet glycoprotein VI. We aimed to determine and assess the safety and efficacy of the optimal dose of glenzocimab in patients with acute ischaemic stroke eligible to receive alteplase with or without mechanical thrombectomy. METHODS: This randomised, double-blind, placebo-controlled study with dose-escalation (1b) and dose-confirmation (2a) phases (ACTIMIS) was done in 26 stroke centres in six European countries. Participants were adults (≥18 years) with disabling acute ischaemic stroke with a National Institutes of Health Stroke Scale score of 6 or higher before alteplase administration. Patients were randomly assigned treatment using a central electronic procedure. Total administered dose at the end of the intravenous administration was 125 mg, 250 mg, 500 mg, and 1000 mg of glenzocimab or placebo in phase 1b and 1000 mg of glenzocimab or placebo in phase 2a. Treatment was initiated 4·5 h or earlier from stroke symptom onset in patients treated with alteplase with or without mechanical thrombectomy. The sponsor, study investigator and study staff, patients, and central laboratories were all masked to study treatment until database lock. Primary endpoints across both phases were safety, mortality, and intracranial haemorrhage (symptomatic, total, and fatal), assessed in all patients who received at least a partial dose of study medication (safety set). The trial is registered on ClinicalTrials.gov, NCT03803007, and is complete. FINDINGS: Between March 6, 2019, and June 27, 2021, 60 recruited patients were randomly assigned to 125 mg, 250 mg, 500 mg, or 1000 mg glenzocimab, or to placebo in phase 1b (n=12 per group) and were included in the safety analysis. Glenzocimab 1000 mg was well tolerated and selected as the phase 2a recommended dose; from Oct 2, 2020, to June 27, 2021, 106 patients were randomly assigned to glenzocimab 1000 mg (n=53) or placebo (n=53). One patient in the placebo group received glenzocimab in error and therefore 54 and 52, respectively, were included in the safety set. In phase 2a, the most frequent treatment-emergent adverse event was non-symptomatic haemorrhagic transformation, which occurred in 17 (31%) of 54 patients treated with glenzocimab and 26 (50%) of 52 patients treated with placebo. Symptomatic intracranial haemorrhage occurred in no patients treated with glenzocimab compared with five (10%) patients in the placebo group. All-cause deaths were lower with glenzocimab 1000 mg (four [7%] patients) than with placebo (11 [21%] patients). INTERPRETATION: Glenzocimab 1000 mg in addition to alteplase, with or without mechanical thrombectomy, was well tolerated, and might reduce serious adverse events, intracranial haemorrhage, and mortality. These findings support the need for future research into the potential therapeutic inhibition of glycoprotein VI with glenzocimab plus alteplase in patients with acute ischaemic stroke. FUNDING: Acticor Biotech.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Estados Unidos , Adulto , Humanos , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/efeitos adversos , Isquemia Encefálica/tratamento farmacológico , Glicoproteínas da Membrana de Plaquetas , Hemorragias Intracranianas
8.
Blood Coagul Fibrinolysis ; 35(2): 62-65, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38179703

RESUMO

Glanzmann thrombasthenia is a rare bleeding disorder induced by inherited defects of the platelet membrane αIIbß3 glycoprotein. Glomangiopericytoma, on the other hand, is a very rare sinonasal tumor demonstrating a perivascular myoid phenotype. We herein report the first described case in the literature of Glanzmann thrombasthenia and glomangiopericytoma. The patient is a 40-year-old man diagnosed with type 1 Glanzmann thrombasthenia who presented with repetitive and profuse posterior epistaxis initially managed with platelet transfusions and recombinant activated factor VII (rFVIIa). Due to the unresolved epistaxis, nasal endoscopy was performed revealing a vascularized tumor. Subsequently, a sphenopalatine artery embolization followed by a surgical excision of the tumor was performed. The pathology report diagnosis of the tumor was glomangiopericytoma. This case sheds the lights on a very rare cause of epistaxis in a patient with Glanzmann thrombasthenia, with a challenging multidisciplinary management. A local cause of epistaxis should always be considered even in case of a diagnosed bleeding disorder, especially when the bleeding is recurrent.


Assuntos
Neoplasias de Cabeça e Pescoço , Trombastenia , Masculino , Humanos , Adulto , Trombastenia/complicações , Trombastenia/diagnóstico , Epistaxe/etiologia , Transfusão de Plaquetas/efeitos adversos , Neoplasias de Cabeça e Pescoço/complicações , Glicoproteínas da Membrana de Plaquetas
9.
Clin Rheumatol ; 43(1): 307-314, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37999855

RESUMO

INTRODUCTION: Thrombocytopenia is one of the primary Sjögren's syndrome (pSS) hematological manifestations. The objective of this study was to evaluate the possible roles of antiplatelet glycoprotein autoantibodies in the pathogenesis of thrombocytopenia in primary Sjögren's syndrome (pSS). METHODS: The level of plasma anti-glycoprotein Ib, IIIa and IIb/IIIa autoantibodies in 36 pSS patients without thrombocytopenia and 35 pSS patients with thrombocytopenia, 36 Idiopathic thrombocytopenic purpura (ITP) patients and 39 normal control were measured with enzyme-linked immunosorbent assay (ELISA). RESULTS: The level of anti-GPIb, GPIIIa, GPIIb/IIIa autoantibodies (A490) in the pSS with thrombocytopenia was significantly higher than that of pSS without thrombocytopenia (0.813 ± 0.161 vs 0.688 ± 0.133; 0.917 ± 0.094 vs 0.802 ± 0.070; 0.911 ± 0.125 vs 0.782 ± 0.109). Incidences of the anti-GPIb, GPIIIa, GPIIb/IIIa autoantibodies in the pSS with thrombocytopenia was significantly higher than that of pSS without thrombocytopenia (25.7% vs 0%; 65.7% vs 11.1%; 31.4% vs 0%). In patients with pSS, there was a lower platelet count in anti-GPIb, GPIIIa, GPIIb/IIIa autoantibodies positive patients ((25.67 ± 5.5) × 10^9/L vs (116.8 ± 84.52) × 10^9/L; 29.04 ± 11.33 × 10^9/L vs (152.0 ± 75.47) × 10^9/L; (31.55 ± 14.0) × 10^9/L vs (118.8 ± 85.24) × 10^9/L). CONCLUSION: Elevated plasma levels of anti-platelet glycoprotein autoantibodies may play a role in the pathogenesis of thrombocytopenia in pSS. Key Points • The level of anti-GPIb, GPIIIa, GPIIb/IIIa autoantibodies (A490) in the pSS with thrombocytopenia was increased. • Incidences of the anti-GPIb, GPIIIa, GPIIb/IIIa autoantibodies in the pSS with thrombocytopenia was increased. • In patients with pSS, there was a lower platelet count in anti-GPIb, GPIIIa, GPIIb/IIIa autoantibodies positive patients.


Assuntos
Anemia , Púrpura Trombocitopênica Idiopática , Síndrome de Sjogren , Trombocitopenia , Humanos , Autoanticorpos , Síndrome de Sjogren/complicações , Integrina beta3 , Plaquetas , Glicoproteínas da Membrana de Plaquetas
10.
J Thromb Haemost ; 22(1): 271-285, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37813196

RESUMO

BACKGROUND: Clustering of the receptors glycoprotein receptor VI (GPVI), C-type lectin-like receptor 2 (CLEC-2), low-affinity immunoglobulin γ Fc region receptor II-a (FcγRIIA), and platelet endothelial aggregation receptor 1 (PEAR1) leads to powerful activation of platelets through phosphorylation of tyrosine in their cytosolic tails and initiation of downstream signaling cascades. GPVI, CLEC-2, and FcγRIIA signal through YxxL motifs that activate Syk. PEAR1 signals through a YxxM motif that activates phosphoinositide 3-kinase. Current ligands for these receptors have an undefined valency and show significant batch variation and, for some, uncertain specificity. OBJECTIVES: We have raised nanobodies against each of these receptors and multimerized them to identify the minimum number of epitopes to achieve robust activation of human platelets. METHODS: Divalent and trivalent nanobodies were generated using a flexible glycine-serine linker. Tetravalent nanobodies utilize a mouse Fc domain (IgG2a, which does not bind to FcγRIIA) to dimerize the divalent nanobody. Ligand affinity measurements were determined by surface plasmon resonance. Platelet aggregation, adenosine triphosphate secretion, and protein phosphorylation were analyzed using standardized methods. RESULTS: Multimerization of the nanobodies led to a stepwise increase in affinity with divalent and higher-order nanobody oligomers having sub-nanomolar affinity. The trivalent nanobodies to GPVI, CLEC-2, and PEAR1 stimulated powerful and robust platelet aggregation, secretion, and protein phosphorylation at low nanomolar concentrations. A tetravalent nanobody was required to activate FcγRIIA with the concentration-response relationship showing a greater variability and reduced sensitivity compared with the other nanobody-based ligands, despite a sub-nanomolar binding affinity. CONCLUSION: The multivalent nanobodies represent a series of standardized, potent agonists for platelet glycoprotein receptors. They have applications as research tools and in clinical assays.


Assuntos
Glicoproteínas de Membrana , Anticorpos de Domínio Único , Humanos , Camundongos , Animais , Glicoproteínas de Membrana/metabolismo , Ligantes , Fosfatidilinositol 3-Quinases/metabolismo , Anticorpos de Domínio Único/metabolismo , Quinase Syk , Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Agregação Plaquetária , Lectinas Tipo C/metabolismo , Ativação Plaquetária , Receptores de Superfície Celular/metabolismo
11.
Platelets ; 34(1): 2288213, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38031964

RESUMO

Platelet-specific collagen receptor glycoprotein (GP)VI is stable on the surface of circulating platelets but undergoes ectodomain cleavage on activated platelets. Activation-dependent GPVI metalloproteolysis is primarily mediated by A Disintegrin And Metalloproteinase (ADAM) 10. Regulation of platelet ADAMs activity is not well-defined however Tissue Inhibitors of Metalloproteinases (TIMPs) may play a role. As levels of TIMPs on platelets and the control of ADAMs-mediated shedding by TIMPs has not been evaluated, we quantified the levels of TIMPs on the surface of resting and activated platelets from healthy donors by flow cytometry and multiplex ELISA. Variable levels of all TIMPs could be detected on platelets. Plasma contained significant quantities of TIMP1 and TIMP2, but only trace amounts of TIMP3 and TIMP4. Recombinant TIMP3 strongly ablated resting and activated platelet ADAM10 activity, when monitored using a quenched fluorogenic peptide substrate with ADAM10 specificity. Whilst ADAM10-specific inhibitor GI254023X or ethylenediamine tetraacetic acid (EDTA) could modulate ligand-initiated shedding of GPVI, only recombinant TIMP2 achieved a modest (~20%) inhibition. We conclude that some platelet TIMPs are able to modulate platelet ADAM10 activity but none strongly regulate ligand-dependent shedding of GPVI. Our findings provide new insights into the regulation of platelet receptor sheddase activity.


What do we know? Platelet receptor GPVI initiates platelet adhesion and aggregation and is proteolytically cleaved from the activated platelet surfaceThe metalloproteinases responsible belong to the ADAMs family of enzymes which are inhibited by TIMPsWhat did we discover? Plasma contains significant amounts of TIMP1 and TIMP2Circulating platelets bear significant amounts of TIMPs 1, 2, and 3Recombinant TIMP3 strongly inhibits resting and activated platelet ADAM10 activityExogenous addition of TIMP2 mildly blocked ligand-initiated shedding of GPVIWhat is the impact? TIMPs may modulate ADAM10 activity under resting conditions and stabilize GPVI levels in response to platelet activationAnti-GPVI agents are being evaluated as anti-thrombotic agents, however, acute loss of GPVI in trauma or settings of thrombocytopenia is linked with clinical bleedingUnderstanding how GPVI levels are regulated is important as agents that modulate GPVI function are emerging as important therapeutics for clinical applications in Thrombosis and Hemostasis fields.


Assuntos
Plaquetas , Glicoproteínas da Membrana de Plaquetas , Humanos , Ligantes , Proteína ADAM10/genética , Peptídeos/farmacologia , Metaloproteases , Ativação Plaquetária , Proteínas de Membrana , Secretases da Proteína Precursora do Amiloide
13.
J Thromb Haemost ; 21(12): 3619-3632, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678551

RESUMO

BACKGROUND: Upon vessel injury, platelets adhere to exposed matrix constituents via specific membrane receptors, including the von Willebrand factor receptor glycoprotein (GP)Ib-IX-V complex and integrins ß1 and ß3. In platelets, the Fes/CIP4-homology Bin-Amphiphysin-Rvs protein PACSIN2 associates with the cytoskeletal and scaffolding protein filamin A (FlnA), linking GPIbα and integrins to the cytoskeleton. OBJECTIVES: Here we investigated the role of PACSIN2 in platelet function. METHODS: Platelet parameters were evaluated in mice lacking PACSIN2 and platelet integrin ß1. RESULTS: Pacsin2-/- mice displayed mild thrombocytopenia, prolonged bleeding time, and delayed thrombus formation in a ferric chloride-mediated carotid artery injury model, which was normalized by injection of control platelets. Pacsin2-/- platelets formed unstable thrombi that embolized abruptly in a laser-induced cremaster muscle injury model. Pacsin2-/- platelets had hyperactive integrin ß1, as evidenced by increased spreading onto surfaces coated with the collagen receptor α2ß1-specific peptide GFOGER and increased binding of the antibody 9EG7 directed against active integrin ß1. By contrast, Pacsin2-/- platelets had normal integrin αIIbß3 function and expressed P-selectin normally following stimulation through the collagen receptor GPVI or with thrombin. Deletion of platelet integrin ß1 in Pacsin2-/- mice normalized platelet count, hemostasis, and thrombus formation. A PACSIN2 peptide mimicking the FlnA-binding site mediated the pull-down of a FlnA rod 2 construct by integrin ß7, a model for integrin ß-subunits. CONCLUSIONS: Pacsin2-/- mice displayed severe thrombus formation defects due to hyperactive platelet integrin ß1. The data suggest that PACSIN2 binding to FlnA negatively regulates platelet integrin ß1 hemostatic function.


Assuntos
Integrina beta1 , Ativação Plaquetária , Trombose , Animais , Camundongos , Plaquetas/metabolismo , Hemostasia , Hemostáticos/metabolismo , Integrina beta1/metabolismo , Peptídeos/farmacologia , Adesividade Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores de Colágeno/metabolismo , Trombose/metabolismo
14.
Hematology ; 28(1): 2255801, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37702365

RESUMO

Objectives: We aimed to investigate relationships of platelet glycoprotein (GP) specific antibody with therapeutic efficacy of high-dose dexamethasone (HD-DXM) and bleeding score in primary immune thrombocytopenia (ITP) adults. Methods: A retrospective study was carried out to analyze relationships of polymorphism of GP specific antibody with initial therapeutic efficacy of HD-DXM and bleeding score of newly diagnosed ITP adults between 1 June, 2016 and 31 January, 2020. Results: 59 patients were involved in the study, with 33 cases of responders and 26 cases of non-responders between June 2016 and January 2020. At admission, there were 31 (52.5%) GP antibody-positive patients. Initial therapy of HD-DXM was effective for 78.6% GP antibody-negative patients and 35.5% GP antibody-positive patients, with a better therapeutic efficacy in patients with anti-GP Ib/IX antibody or anti-GP IIb/IIIa antibody but not in those with anti-GP Ib/IX antibody plus anti-GP IIb/IIIa antibody. Notably, therapeutic efficacy is much worse for minority (Uyghur) patients compared with corresponding Han patients. Similarly, it was much lower in GP antibody-positive patients compared with corresponding negative ones at low and medium bleeding score, with no response in GP antibody-positive patients at high bleeding score. Furthermore, there was a moderate negative correlation between therapeutic efficacy and GP-specific antibody (p < 0.05), but no obvious linear relationship between clinical bleeding degree and GP-specific antibody (p > 0.05). Conclusion: Collectively, the newly diagnosed ITP adults with GP-specific antibody have a poor response to short-term HD-DXM, especially in minority (Uyghur) patients with GP-specific antibody in China.


Assuntos
Púrpura Trombocitopênica Idiopática , Humanos , Adulto , Púrpura Trombocitopênica Idiopática/diagnóstico , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Estudos Retrospectivos , Glicoproteínas da Membrana de Plaquetas , China , Hemorragia/etiologia , Dexametasona/uso terapêutico
15.
Biophys J ; 122(18): 3738-3748, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37434354

RESUMO

Upon vascular injury, platelets form a hemostatic plug by binding to the subendothelium and to each other. Platelet-to-matrix binding is initially mediated by von Willebrand factor (VWF) and platelet-to-platelet binding is mediated mainly by fibrinogen and VWF. After binding, the actin cytoskeleton of a platelet drives its contraction, generating traction forces that are important to the cessation of bleeding. Our understanding of the relationship between adhesive environment, F-actin morphology, and traction forces is limited. Here, we examined F-actin morphology of platelets attached to surfaces coated with fibrinogen and VWF. We identified distinct F-actin patterns induced by these protein coatings and found that these patterns were identifiable into three classifications via machine learning: solid, nodular, and hollow. We observed that traction forces for platelets were significantly higher on VWF than on fibrinogen coatings and these forces varied by F-actin pattern. In addition, we analyzed the F-actin orientation in platelets and noted that their filaments were more circumferential when on fibrinogen coatings and having a hollow F-actin pattern, while they were more radial on VWF and having a solid F-actin pattern. Finally, we noted that subcellular localization of traction forces corresponded to protein coating and F-actin pattern: VWF-bound, solid platelets had higher forces at their central region while fibrinogen-bound, hollow platelets had higher forces at their periphery. These distinct F-actin patterns on fibrinogen and VWF and their differences in F-actin orientation, force magnitude, and force localization could have implications in hemostasis, thrombus architecture, and venous versus arterial thrombosis.


Assuntos
Hemostáticos , Fator de von Willebrand , Fator de von Willebrand/metabolismo , Fibrinogênio/metabolismo , Plaquetas/metabolismo , Actinas/metabolismo , Tração , Glicoproteínas da Membrana de Plaquetas/metabolismo , Hemostáticos/metabolismo , Citoesqueleto de Actina/metabolismo
16.
J Biol Chem ; 299(7): 104865, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37268160

RESUMO

Spleen tyrosine kinase (Syk) is expressed in a variety of hemopoietic cells. Upon phosphorylation of the platelet immunoreceptor-based activation motif of the glycoprotein VI (GPVI)/Fc receptor gamma chain collagen receptor, both the tyrosine phosphorylation and activity of Syk are increased leading to downstream signaling events. Although it has been established that the activity of Syk is regulated by tyrosine phosphorylation, the specific roles of individual phosphorylation sites remain to be elucidated. We observed that Syk Y346 in mouse platelets was still phosphorylated when GPVI-induced Syk activity was inhibited. We then generated Syk Y346F mice and analyzed the effect this mutation exerts on platelet responses. Syk Y346F mice bred normally, and their blood cell count was unaltered. We did observe potentiation of GPVI-induced platelet aggregation and ATP secretion as well as increased phosphorylation of other tyrosines on Syk in the Syk Y346F mouse platelets when compared to WT littermates. This phenotype was specific for GPVI-dependent activation, since it was not seen when AYPGKF, a PAR4 agonist, or 2-MeSADP, a purinergic receptor agonist, was used to activate platelets. Despite a clear effect of Syk Y346F on GPVI-mediated signaling and cellular responses, there was no effect of this mutation on hemostasis as measured by tail-bleeding times, although the time to thrombus formation determined using the ferric chloride injury model was reduced. Thus, our results indicate a significant effect of Syk Y346F on platelet activation and responses in vitro and reveal its complex nature manifesting itself by the diversified translation of platelet activation into physiological responses.


Assuntos
Plaquetas , Agregação Plaquetária , Quinase Syk , Animais , Camundongos , Fosforilação , Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/metabolismo , Quinase Syk/genética , Quinase Syk/metabolismo , Tirosina
17.
Arterioscler Thromb Vasc Biol ; 43(8): 1494-1509, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381987

RESUMO

BACKGROUND: MAGT1 (magnesium transporter 1) is a subunit of the oligosaccharide protein complex with thiol-disulfide oxidoreductase activity, supporting the process of N-glycosylation. MAGT1 deficiency was detected in human patients with X-linked immunodeficiency with magnesium defect syndrome and congenital disorders of glycosylation, resulting in decreased cation responses in lymphocytes, thereby inhibiting the immune response against viral infections. Curative hematopoietic stem cell transplantation of patients with X-linked immunodeficiency with magnesium defect causes fatal bleeding and thrombotic complications. METHODS: We studied the role of MAGT1 deficiency in platelet function in relation to arterial thrombosis and hemostasis using several in vitro experimental settings and in vivo models of arterial thrombosis and transient middle cerebral artery occlusion model of ischemic stroke. RESULTS: MAGT1-deficient mice (Magt1-/y) displayed accelerated occlusive arterial thrombus formation in vivo, a shortened bleeding time, and profound brain damage upon focal cerebral ischemia. These defects resulted in increased calcium influx and enhanced second wave mediator release, which further reinforced platelet reactivity and aggregation responses. Supplementation of MgCl2 or pharmacological blockade of TRPC6 (transient receptor potential cation channel, subfamily C, member 6) channel, but not inhibition of store-operated calcium entry, normalized the aggregation responses of Magt1-/y platelets to the control level. GP (glycoprotein) VI activation of Magt1-/y platelets resulted in hyperphosphorylation of Syk (spleen tyrosine kinase), LAT (linker for activation of T cells), and PLC (phospholipase C) γ2, whereas the inhibitory loop regulated by PKC (protein kinase C) was impaired. A hyperaggregation response to the GPVI agonist was confirmed in human platelets isolated from a MAGT1-deficient (X-linked immunodeficiency with magnesium defect) patient. Haploinsufficiency of TRPC6 in Magt1-/y mice could normalize GPVI signaling, platelet aggregation, and thrombus formation in vivo. CONCLUSIONS: These results suggest that MAGT1 and TRPC6 are functionally linked. Therefore, deficiency or impaired functionality of MAGT1 could be a potential risk factor for arterial thrombosis and stroke.


Assuntos
Proteínas de Transporte de Cátions , Homeostase , Infarto da Artéria Cerebral Média , AVC Isquêmico , Trombose , Animais , Humanos , Camundongos , Plaquetas/metabolismo , Cálcio/metabolismo , Cátions/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/complicações , AVC Isquêmico/metabolismo , Magnésio/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombose/genética , Trombose/metabolismo , Canal de Cátion TRPC6/metabolismo , Proteínas de Transporte de Cátions/deficiência
18.
Platelets ; 34(1): 2226756, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37350057

RESUMO

The association between endometriosis and autoimmune diseases is well known, however no acquired platelet function defect has been described so far. We describe the case of two patients with endometriosis associated with an antiplatelet glycoprotein VI (anti-GPVI) antibody. The two women with deep pelvic endometriosis associated with secondary infertility presented a mild bleeding tendency, a deficient platelet aggregation response to collagen, convulxin or CRP and a severe GPVI deficiency. Immunoblot revealed a combined FcRγ deficiency but no indication of GPVI cleavage. In the first case, platelet count was normal and an anti-GPVI IgG was detected in plasma. A first corticosteroids administration normalized in vitro platelet functions but further administrations were unsuccessful. Three IVF attempts failed. Conservative laparoscopic surgery was carried out after antifibrinolytic treatment without bleeding. The second case presented with a history of moderate thrombocytopenia and a weak anti-GPVI in the context of infertility and autoimmune disease, the Sjögren syndrome resolved after corticosteroids and hydroxychloroquine treatment. Acquired GPVI deficiencies are rare. It would be useful to determine whether the association with endometriosis is coincidental or not by more systematic investigations. It does not seem that in these patients, GPVI deficiency is associated with an increased risk of bleeding.


What is the context? • Evidence for an immune system dysfunction is reported in endometriosis and the association between endometriosis and autoimmune diseases is well known.• No autoimmune platelet function defect has been described so far.What is new?• We report two unrelated patients with endometriosis-associated infertility presenting a platelet glycoprotein VI deficiency due to an autoantibody.• In both cases, a deficient platelet aggregation response to collagen, convulxin or CRP and a severe GPVI deficiency were observed.• Immunoblot revealed no indication of GPVI cleavage.What is the impact? • Our observation raises the question whether GPVI could be a preferential target for the development of anti-GPVI autoantibodies associated with endometriosis.• It does not seem that in these patients, GPVI deficiency is associated with an increased risk of severe bleeding disorder.


Assuntos
Endometriose , Infertilidade , Humanos , Feminino , Glicoproteínas da Membrana de Plaquetas , Endometriose/complicações , Endometriose/tratamento farmacológico , Anticorpos , Contagem de Plaquetas , Plaquetas
19.
Thromb Res ; 228: 105-116, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302266

RESUMO

INTRODUCTION: The protein tyrosine phosphatase SHP2 (PTPN11) is a negative regulator of glycoprotein VI (GPVI)-induced platelet signal under certain conditions. Clinical trials with derivatives of the allosteric drug SHP099, inhibiting SHP2, are ongoing as potential therapy for solid cancers. Gain-of-function mutations of the PTPN11 gene are observed in part of the patients with the Noonan syndrome, associated with a mild bleeding disorder. Assessment of the effects of SHP2 inhibition in platelets from controls and Noonan syndrome patients. MATERIALS AND METHODS: Washed human platelets were incubated with SHP099 and stimulated with collagen-related peptide (CRP) for stirred aggregation and flow cytometric measurements. Whole-blood microfluidics assays using a dosed collagen and tissue factor coating were performed to assess shear-dependent thrombus and fibrin formation. Effects on clot formation were evaluated by thromboelastometry. RESULTS: Pharmacological inhibition of SHP2 did not alter GPVI-dependent platelet aggregation under stirring, but it enhanced integrin αIIbß3 activation in response to CRP. Using whole-blood microfluidics, SHP099 increased the thrombus buildup on collagen surfaces. In the presence of tissue factor and coagulation, SHP099 increased thrombus size and reduced time to fibrin formation. Blood from PTPN11-mutated Noonan syndrome patients, with low platelet responsiveness, after ex vivo treatment with SHP099 showed a normalized platelet function. In thromboelastometry, SHP2 inhibition tended to increase tissue factor-induced blood clotting profiles with tranexamic acid, preventing fibrinolysis. CONCLUSION: Pharmacological inhibition of SHP2 by the allosteric drug SHP099 enhances GPVI-induced platelet activation under shear conditions with a potential to improve platelet functions of Noonan syndrome patients.


Assuntos
Síndrome de Noonan , Trombose , Humanos , Plaquetas/metabolismo , Síndrome de Noonan/tratamento farmacológico , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Tromboplastina/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Colágeno/metabolismo , Fibrina/metabolismo , Glicoproteínas da Membrana de Plaquetas , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo
20.
J Thromb Haemost ; 21(8): 2260-2267, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37150294

RESUMO

BACKGROUND: Collagen-induced platelet activation is predominantly mediated by glycoprotein (GP) VI through formation of receptor clusters that coincide with the accumulation of signaling molecules and are hypothesized to drive strong and sustained platelet activation. OBJECTIVES: To determine the importance of GPVI clusters for thrombus formation in whole blood under shear. METHODS: We utilized whole blood microfluidics and an anti-GPVI nanobody (Nb), Nb28, labeled with AlexaFluor 488, to assess the distribution of GPVI on the surface of platelets adhering to a range of collagen-like substrates with different platelet activation potentials. RESULTS: Automated analysis of GPVI surface distribution on platelets supported the hypothesis that there is a relationship between GPVI cluster formation, thrombus size, and phosphatidylserine (PS) exposure. Substrates that supported the formation of macroclusters also induced significantly bigger aggregates, with increased amounts of PS-exposing platelets in comparison to substrates where no GPVI clusters were detected. Furthermore, we demonstrate that only direct inhibition of GPVI binding, but not of downstream signaling, is able to disrupt cluster formation. CONCLUSION: Labeled anti-GPVI Nb28 permits visualization of GPVI clustering under flow conditions. Furthermore, whilst inhibition of downstream signaling does not affect clustering, it does prevent thrombus formation. Therefore, GPVI macroclustering is a prerequisite for thrombus formation and platelet activation, namely, PS exposure, on highly GPVI-dependent collagen surfaces.


Assuntos
Plaquetas , Trombose , Humanos , Plaquetas/metabolismo , Fosfatidilserinas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Ativação Plaquetária , Colágeno/metabolismo , Agregação Plaquetária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...